@NOMBRES COMPLEXES

@ Calculs avec les nombres complexes

| Généralités sur les nombres complexes

B Un peu de notation...

?=-1

On admet I'existence d’'un élément i tel que :

A Nombre complexe

On appelle [nombre complexe] tout nombre noté = pouvant s’écrire sous la forme :

z=a+1ib
Ou:
> a et b sont des réels. On note alors a,b € R. > qgestla partie réelle de z et est notée Re(z).
> a+ibestla forme algebrigue du complexe z. > pestla partie imaginaire de z et est notée Zm(z).

\\
Q Exemple

Tout nombre complexe > appartient a I'ensemble C, i .

I' ensemble des complexes . Le réel 5 peut étre vu comme le com-
Les nombres réels, c’est a dire qui appartiennent a R et que I'on écrit z, plexe puisque 5 = 5+ 0.

on peut aussi les écrire z + 0i, ce qui implique que tous les réels sont De méme, —3 est un reel et il correspond
des complexes sans partie imaginaire. a-3+0ieC.

R# Imaginaire pur

Soit z un nombre complexe (z € C), alors si Re(z) est nul, on parle d’[ imaginaire pur].
On parle des nombres complexes =z de la forme suivante :

z=0+bs
OubeR.

Complément sur les ensembles

Puisque tous les réels sont des complexes, on dit alors que R est
inclu dans C. Et cela s’illustre avec le schéma ci-contre.

En partant des naturels, jusqu’aux complexes, I'ensemble qui en-
globe tous les autres.

Onnote:NCZcCcDcQcRcC
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Rf Inclusion de 2 ensembles

Soient A, B deux ensembles, on dit que | A est inclu dans /3 | si tous les éléments de A appartiennent aussi & B.

O Remarque

La partie réelle et la partie imaginaire d’'un complexe sont des réels .

B Egalité des complexes

Soient z1 = a1 + iby et zo = as + iby deux nombres complexes sous forme algébrique, alors on dit que

[z1 et z; sont égaux] lorsque leur partie réelles et leurs parties imaginaires sont égales.
On note :

(21 = z2) <— (a1 =ay et by = bz)

Opérations sur les nombres complexes

QB Somme des complexes

Q Exemple

Soient z; = a; + ib; et zo = as + ibs deux nombres complexes, on
appelle | somme de -, et =, | définie par :

z=1+6ietz =4+ 8 alors:

‘ ‘ ‘ z+2 =(1+4)+(6+8)i=5+14i
21+ 29 = ((Ll —|—Zb1)+((12+2l)2) :a1+a2—|—z(bl—|—b2)

R# Produit des complexes 0 Exemple

.

Soient z; = a1 + ib; et z3 = as + iby deux nombres complexes, on z=1+6ietz =4+8& alors:
appelle | produit de -, et -, | définie par :

22" = (14 4i)(6 + 8i) — 4+ 8i

2122 = (a1 +iby)(az + ib2) = araz — biby + i(asbe + azby) Dans les exercices, il sera plus rigoureux

On obtient —b, by car bybyi? = —by by puisque 2 = —1. de développer les étapes.

Q Méthode

Calculer le produit de 2 complexes

Soient z; = a; + by €t z5 = as + ibs, alors on calcul le produit z;zo comme suit :
/| Développer le produit.
1 Simplifier avec i2 = —1.

=] Rassembler les parties réelles et les parties imaginaires entre elles.

© Remarque

Lensemble des complexes C muni de I'opération d’addition + et de la multiplication - est appelé corps des complexes et
est noté (C, +-).
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€@ Module et conjugué d’un nombre complexe

| Le module d’'un nombre complexe

RE Module d’un complexe _ Q Exemple
Soit z = a + ib un complexe sous forme algébrique. z=1+6ialors:
On appelle le réel positif noté |z| et défini par :

ol = VI F 6 = V3T

|z| = Va2 + b2 Sans pouvoir réduire autrement...
N\ /
Propriété
LE MODULE
Soient z, 21,25 € C avec z5 # 0 alorson a :
B (:/=0) = (=0 B 2122 = [21]]2| 3 RN
22 | 22|

Dans les propriétés précédentes, nous avons décidé de définir zo comme étant un nombre complexe puis précisé gu’il doit
étre différent de 0. Que I'on a écrit : z5 € C et z5 # 0.

Il faut savoir que cette écriture est un peu longue et qu’on peut évidemment I'écrire d’'une maniére bien plus courte :
C*={zeC|z#0}

Ainsi on aurait pu écrire : z5 € C*.

Lensemble C* représente | les complexes privés de 0 .

Conjugué d’un nombre complexe

RB Conjugué d’un complexe __ QExemple
Soit z = a + b un complexe sous forme algébrique. z=1+6ialors :
On appelle noté z et défini par : z=1—6i
Z=a—1b on fait : —Im(z)
-

/

Le conjugué d’'un complexe est obtenu en changeant le signe de la partie imaginaire de ce dernier.

Propriété z
LE CONJUGUE
Soient z, 21,25 € C avec z, # 0 alorson a :

H:-: B:=z-==

Re(z):z+z

2 EZ1+Z2=Z_1+Z_2
z—Z
Im(Z)ZT
b 7
B:cr) —= (=7 P
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| Simplifier une fraction complexe

R Fraction complexe

Soit N le numérateur et D le dénominateur,
Alors toute fraction de la forme :

N

D

Ou D est une expression complexe est appelée | fraction complexe |

\

O Méthode

Simplifier une fraction complexe

Le terme « simplifier » est une autre maniére de demander d’[ exprimer la forme algébrique] d’'un nombre complexe
donné.

N N

ol =

DD |D|?

car DD = |D|?.
n Identifier N et D.
"]l Déterminer D ou |D|? (selon la méthode utilisée).

1 appliquer la formule correspondante.
"1 Conclure.

_ Q Exemple

On cherche a simplifier le complexe :

3+2i
P
2+ 3i

» Etape 1 — Identification du numérateur et du dénominateur On pose : N =3+ 2i et D = 2 + 3i

» I:Etape 2 — Calculons le conjugué du dénominateur D Puisque D = 2 + 3i alors on obtient D = 2 — 3i
» Etape 3 — Simplifions la fraction avec I'une des formules

N_E_(3+2z‘)(2—3z‘)_6—9z‘+4¢—6i2_6—5i+6_12—5i_g_3i
DD  (2+3i)(2—-3i) 4-6i+6i—92  4+9 13 13 13

» Etape 4 — Conclusion Ainsi on obtient :
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€) Forme géométrique d’un nombre complexe

| Représentation géométrique

Im

Al Image d’un nombre complexe
2 o M. (a,b)
. L
A tout nombre complexe z = a + ib (oU a,b € R), on associe un point M, de |
coordonnées cartésiennes (a, b). 5 2] |
Le point M, est appelé [ image du nombre complexe z ] dans le plan. :
I
0 a @ Re

O Remarque

> Si z # 0 alors le poit M, sera différent de I'origine O du repére.
> Lalongueur OM, est égal a va? + b2 = |z|.

M. Al Argument d’'un nombre complexe
Imf--=----------<
H E Soit z € C* et M, son image ass_)ociée dans le plan.
A ! Toute mesure de I'angle 6 (', OM:) est appelée | argument de - | et est noté :
v 0 E arg(z) =0+2kn, keZ
ol i’ Re

O Remarque

> Siz =0 alors il n’a pas d’argument.
> Si z admet un argument, alors il en admet une infinité car tous les angles sont équivalent a 2kx pres, k € Z.

o T
RB Forme trigonométrique d’un nombre complexe i
Soit z € C* et 6 un argument de z. . M,
Alors : |2[sin 6 p------------
4 |2|

z = |z|(cos() + isin(6))

S

On I'appelle la | forme trigonométrique | de -.
L o| u |z| cos 6

Q Méthode

Calculer 'argument d’'un nombre complexe

Yo

Soit z € C
n Vérifier que z # 0.
E Déterminer la forme algébrique (si besoin) z = a + 1b.
" Calculer le module |z].
ﬂ Trouver 6 tel que :
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A\

Q Exemple

» I:Etape 1 — Vérifier que (z # 0) Ilestclairque (z = 2 — 2i # 0) , donconpeutpoursuivre.
» Etape 2 — Déterminer la forme algébrique de (z) Déjadonnée : (z = a +ib = 2 — 2i) ,avec (a = 2) et (b= —2) .

» Etape 3 — Calcul de (|2|) [|z| =Vt R =B+ (2°2=yEtd=B= Ni]

» Etape 4 — Calculer le cosinus et le sinus de I'angle [cos(e) =g =5=F=%, sin@)=L=5%=-%=—%
» Etape 5 — Déterminer (0) aveclecercletrigonométrique Puisquelecosinusestpositi f etlesinusestnégati f

[0 =T +2kn, keZ]

. 7 N
» Conclusion || arg(z) = ZF +2knr oukeZ

| Forme trigonométrique d’un complexe

BB Ecriture exponentielle d’'un complexe

Soit 0 € R.
Posons :

exp(if) = e = cos(f) + isin(f)

Soit z € C et 6 un de ses arguments,
Alors :

z = |z| cos(0) + isin(0) = |z|e?

Cestla [forme trigonométrique de = ]

B Forme exponentielle d’'un complexe

z = |z]e? J

On note R*. 'ensemble des réels strictement positifs.
Ainsi, soient z; = r1€’ et z, = rye™2 avec ry,7; € R} et 61,0, € R.

Les arguments sont égaux a 2kr pres.

(21=Z2)=>(7“1=7"2 et 04 =92+2]€7T,kEZ)
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B Formules de Moivre

SoitnecZeth cR.
Alorsona:

0\n _ ,inb
(e¥) =e

Ainsi on obtient :

(cos(#) + isin(f)) = cos(nb) + isin(nh)

B Formules d’Euler

it 4 o—if il _ o—if
_ sin(f) = ————
27

Soit 0 € R alors,

O Résolution d’équations du second degré

| Rappels — SPE MATHS & MATHS EXPERTES

Rf Polynéme de degré 2

Soita,b,c € R.
On appelle | polynéme de degré 2 | ou | polynéme du second degré |, tout polynéme de la forme :

P(z) =az® + bz +c

Résolution d’'une équation de degré 2 a coefficients réels |
On souhaite résoudre une équation de la forme :

az® +br+c=0
On commence par calculer le discriminant du polynéme noté et on détermine les solutions selon les cas :

Hsia>o
Alors il y a deux solutions notées z; et x, réelles telle que :

~b+VA
T12 =
2a
Et le polynéme se factorise P(z) = a(x — z1)(x — z2)
Hsila=o
Alors il y a une solution zq dite double telle que :
_ b
o= 2a
Et le polyndme se factorise P(z) = a(z — z¢)?.
Hsia<o
Alors il y a deux solutions complexes z; et z2 de la forme :
—bLtiv—A
Bl = —F7 ——
2a

Et, le polyndme se factorise P(x) = (z — z1)(z — 22)

O Remarque

Ces cas distincts sont a connaitre !
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| Racine carrée d’un nombre complexe

A# Racine carrée d’un complexe O Remarque

Si A € R* alors, il est interdit d’écrire « VA » car la
racine carrée est définie sur R,..

Soit A € C, un nombre complexe donné.

Le nombre § € C est appelé | racine carrée de A | si et
seulement si : fiRy 5 R,

5% = A. T =T

|\ J

Nous, notre objectif est de résoudre I'équation §2 = A.
Il existe alors 2 méthodes :

> La| méthode trigonométrique | > La|méthode algébrique |

B Méthode trigonométrique
Soit 8 un argument de A # 0.

Alors I'équation 5% = A admet deux solutions :

51’2 = :|:\/ |A|€(zg)

Q Méthode

Trouver les racines carrées : METHODE TRIGONOMETRIQUE

On considére une équation de degré 2 a coefficients complexes a, b, c € C de la forme :
az? +bz+c=0
1| Calculer le discriminant A = 6% — 4ac.
E Vérifier que A € C*.

| Déterminer la [ forme exponentielle | de A, cest a dire A = |A]e™.

ﬂ Les solutions de I'équation §2 = A sont données par :

51’2 = :|:\/ |A|€(7’%)

~ © Exemple

On souhaite résoudre : » Etape 5 — Calculer les solutions

52 — 9% On sait que g = %
. . 2

par la METHODE TRIGONOMETRIQUE. Alors les solutions de A = 2i sont données par :

On pose A =%, i.e. A = 2i. - -

» Etape 4 — Calculer la forme exponentielle de A 51 =2e'% et by =—V2e'%

Calculons |A], On peut essayer de simplifier les expressions :

Puisque A = 2i alors |A] = V22 = /2 =4 P y P P '

On se retrouve alors avec : 5, = ﬁ(cos(%) ~|—isin(%)); Gy = —ﬁ(cos(%) n isin(%))

a 0 b 2
cos()=——=-=0 et sin(d)=—=-=1 2
Grace au cercle trigonométrique, on peut affirmer que nl -
Iangle 6 cherché est : [r=1+i]; [62=-1-i]
0= g +2%n, kez

- /
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O Remarque

La méthode trigonométrique peut étre difficile a utiliser si 'angle 6 a trouver n’est pas un angle remarquable.
C’est pour cela qu’on privilégiera la méthode algébrique.

Propriété ; : -
P RESOLUTION PAR LA METHODE ALGEBRIQUE

Supposons que A = a + ib avec a,b € R.
Alors 'équation A = §2 admet deux solutions de la forme ol z et y sont solutions du systéme suivant :

Q@ Méthode

Trouver les racines carrées : METHODE ALGEBRIQUE

On considére une équation de degré 2 a coefficients complexes a, b, c € C de la forme :
az? +bz+c=0
1| Calculer le discriminant A = 6% — 4ac.
E Si besoin, calculer la forme algébrique de A.

| Ecrire et résoudre le systéme suivant :

ﬂ Les solutions de I'équation §2 = A sont données par :

51,2 :l'+iy

Chaque couple (z,y) trouvé représente une solution.

_ Q Exemple

On souhaite résoudre : > D’aprés Ls, 2zy > 0 alors =,y de méme signe dans les
solutions.
82 =2+2i _ )
Les solutions de 4% = A sont données par :
Posons A = §2 donc A = 3 + 4i.

» Etape 3 — Ecrire et résoudre le systéme et

Commengons par calculer |A|

A= VB + £ =/9+16=v25=5

22 +y? =|A|=5
22 —y? =TRe(A)=3
2xy =Im(A)=4

> L1+ Ly,0na2?=8«=22=4<=3=+2
> L1 —Ly,ona2y’=2«=y’=1<=y+1
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Propriété

SOLUTIONS FINALES D’UNE EQUATION DE DEGRE 2

Soit I'équation de degré 2 suivante :
a2 4+bz+c=0

Avec a,b,c € Ceta # 0.
Alors les solutions de I'équation sont données par :

b+
2a

Z12 =

Ou 4 est une racine carrée de A.

Q Méthode

Résoudre une équation de degré 2

n Déterminer a, b, ¢ et vérifier que a # 0.
1 Calculer A = b2 — 4ac.
B Trouver une racine carrée 6 de A en utilisant la méthode algébrique ou la méthode trigonométrique.

"/ Choisir une des racines carrées trouvées.

-] Déterminer les solutions finales de I'équation :
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