
Cours NOMBRES COMPLEXES

1 Calculs avec les nombres complexes

Généralités sur les nombres complexes

Á Un peu de notation...

On admet l’existence d’un élément i tel que :

i2 = −1

_ Nombre complexe

On appelle nombre complexe tout nombre noté z pouvant s’écrire sous la forme :

z = a + ib

Où :
➢ a et b sont des réels. On note alors a, b ∈ R.
➢ a + ib est la forme algébrique du complexe z.

➢ a est la partie réelle de z et est notée Re(z).
➢ b est la partie imaginaire de z et est notée Im(z).

- Remarque

Tout nombre complexe z appartient à l’ensemble C,
l’ ensemble des complexes .
Les nombres réels, c’est à dire qui appartiennent à R et que l’on écrit x,
on peut aussi les écrire x + 0i, ce qui implique que tous les réels sont
des complexes sans partie imaginaire.

� Exemple

Le réel 5 peut être vu comme le com-
plexe puisque 5 = 5 + 0i.
De même, −3 est un réel et il correspond
à −3 + 0i ∈ C.

_ Imaginaire pur

Soit z un nombre complexe (z ∈ C), alors si Re(z) est nul, on parle d’ imaginaire pur .
On parle des nombres complexes z de la forme suivante :

z = 0 + bi

Où b ∈ R.

C
R
Q
D
Z

N

Complément sur les ensembles
Puisque tous les réels sont des complexes, on dit alors que R est
inclu dans C. Et cela s’illustre avec le schéma ci-contre.
En partant des naturels, jusqu’aux complexes, l’ensemble qui en-
globe tous les autres.
On note : N ⊂ Z ⊂ D ⊂ Q ⊂ R ⊂ C
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_ Inclusion de 2 ensembles

Soient A, B deux ensembles, on dit que A est inclu dans B si tous les éléments de A appartiennent aussi à B.

- Remarque

La partie réelle et la partie imaginaire d’un complexe sont des réels .

Á Égalité des complexes

Soient z1 = a1 + ib1 et z2 = a2 + ib2 deux nombres complexes sous forme algébrique, alors on dit que

z1 et z2 sont égaux lorsque leur partie réelles et leurs parties imaginaires sont égales.
On note :

(z1 = z2) ⇐⇒ (a1 = a2 et b1 = b2)

Opérations sur les nombres complexes

_ Somme des complexes

Soient z1 = a1 + ib1 et z2 = a2 + ib2 deux nombres complexes, on
appelle somme de z1 et z2 définie par :

z1 + z2 = (a1 + ib1) + (a2 + ib2) = a1 + a2 + i(b1 + b2)

� Exemple

z = 1 + 6i et z′ = 4 + 8i alors :

z + z′ = (1 + 4) + (6 + 8)i = 5 + 14i

_ Produit des complexes

Soient z1 = a1 + ib1 et z2 = a2 + ib2 deux nombres complexes, on
appelle produit de z1 et z2 définie par :

z1z2 = (a1 + ib1)(a2 + ib2) = a1a2 − b1b2 + i(a1b2 + a2b1)

On obtient −b1b2 car b1b2i2 = −b1b2 puisque i2 = −1.

� Exemple

z = 1 + 6i et z′ = 4 + 8i alors :

zz′ = (1 + 4i)(6 + 8i) − 4 + 8i

Dans les exercices, il sera plus rigoureux
de développer les étapes.

� Méthode

Calculer le produit de 2 complexes

Soient z1 = a1 + ib1 et z2 = a2 + ib2, alors on calcul le produit z1z2 comme suit :

1 Développer le produit.

2 Simplifier avec i2 = −1.

3 Rassembler les parties réelles et les parties imaginaires entre elles.

- Remarque

L’ensemble des complexes C muni de l’opération d’addition + et de la multiplication · est appelé corps des complexes et
est noté (C, +·).
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2 Module et conjugué d’un nombre complexe

Le module d’un nombre complexe

_ Module d’un complexe

Soit z = a + ib un complexe sous forme algébrique.
On appelle module le réel positif noté |z| et défini par :

|z| =
√

a2 + b2

� Exemple

z = 1 + 6i alors :

|z| =
√

12 + 62 =
√

37

Sans pouvoir réduire autrement...

Propriété
LE MODULE

Soient z, z1, z2 ∈ C avec z2 ̸= 0 alors on a :

1 (|z| = 0) ⇐⇒ (z = 0) 2 |z1z2| = |z1||z2| 3
∣∣∣∣z1

z2

∣∣∣∣ = |z1|
|z2|

- Remarque

Dans les propriétés précédentes, nous avons décidé de définir z2 comme étant un nombre complexe puis précisé qu’il doit
être différent de 0. Que l’on a écrit : z2 ∈ C et z2 ̸= 0.
Il faut savoir que cette écriture est un peu longue et qu’on peut évidemment l’écrire d’une manière bien plus courte :

C∗ = {z ∈ C | z ̸= 0}

Ainsi on aurait pu écrire : z2 ∈ C∗.
L’ensemble C∗ représente les complexes privés de 0 .

Conjugué d’un nombre complexe

_ Conjugué d’un complexe

Soit z = a + ib un complexe sous forme algébrique.
On appelle conjugué noté z et défini par :

z = a − ib

� Exemple

z = 1 + 6i alors :

z = 1 − 6i

on fait : −Im(z)

Le conjugué d’un complexe est obtenu en changeant le signe de la partie imaginaire de ce dernier.

Propriété
LE CONJUGUÉ

Soient z, z1, z2 ∈ C avec z2 ̸= 0 alors on a :

1 z = z

2 Re(z) = z + z

2
3 Im(z) = z − z

2i

4 (z ∈ R) ⇐⇒ (z = z)

5 z1z2 = z1 z2

6 z1 + z2 = z1 + z2

7
z1

z2
= z1

z2
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Simplifier une fraction complexe

_ Fraction complexe

Soit N le numérateur et D le dénominateur,
Alors toute fraction de la forme :

N

D

Où D est une expression complexe est appelée fraction complexe .

� Méthode

Simplifier une fraction complexe

Le terme « simplifier » est une autre manière de demander d’ exprimer la forme algébrique d’un nombre complexe
donné.

N

D
= N

DD
= N

|D|2

car DD = |D|2.

1 Identifier N et D.

2 Déterminer D ou |D|2 (selon la méthode utilisée).

3 appliquer la formule correspondante.

4 Conclure.

� Exemple

On cherche à simplifier le complexe :

z = 3 + 2i

2 + 3i

» Étape 1 – Identification du numérateur et du dénominateur On pose : N = 3 + 2i et D = 2 + 3i

» Étape 2 – Calculons le conjugué du dénominateur D Puisque D = 2 + 3i alors on obtient D = 2 − 3i
» Étape 3 – Simplifions la fraction avec l’une des formules

ND

DD
= (3 + 2i)(2 − 3i)

(2 + 3i)(2 − 3i) = 6 − 9i + 4i − 6i2

4 − 6i + 6i − 9i2 = 6 − 5i + 6
4 + 9 = 12 − 5i

13 = 12
13 − 5

13 i

» Étape 4 – Conclusion Ainsi on obtient :

z = 12
13 − 5

13 i
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3 Forme géométrique d’un nombre complexe

Représentation géométrique

_ Image d’un nombre complexe

À tout nombre complexe z = a + ib (où a, b ∈ R), on associe un point Mz de
coordonnées cartésiennes (a, b).

Le point Mz est appelé image du nombre complexe z dans le plan.

Re

Im

u⃗

v⃗
|z|

Mz(a, b)

O a

b

- Remarque

➢ Si z ̸= 0 alors le poit Mz sera différent de l’origine O du repère.
➢ La longueur

−−−→
OMz est égal à

√
a2 + b2 = |z|.

u⃗

v⃗

|z|

θ

Mz

O Re

Im

_ Argument d’un nombre complexe

Soit z ∈ C∗ et Mz son image associée dans le plan.
Toute mesure de l’angle θ (−→u ,

−−−→
OMz) est appelée argument de z et est noté :

arg(z) = θ + 2kπ, k ∈ Z

- Remarque

➢ Si z = 0 alors il n’a pas d’argument.
➢ Si z admet un argument, alors il en admet une infinité car tous les angles sont équivalent à 2kπ près, k ∈ Z.

_ Forme trigonométrique d’un nombre complexe

Soit z ∈ C∗ et θ un argument de z.
Alors :

z = |z|(cos(θ) + i sin(θ))

On l’appelle la forme trigonométrique de z. Re

Im

u⃗

v⃗

|z|

Mz

|z| cos θ

|z| sin θ

θ

O

� Méthode

Calculer l’argument d’un nombre complexe

Soit z ∈ C
1 Vérifier que z ̸= 0.

2 Déterminer la forme algébrique (si besoin) z = a + ib.

3 Calculer le module |z|.

4 Trouver θ tel que :

cos(θ) = a

|z|
et sin(θ) = b

|z|
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� Exemple

» Étape 1 — Vérifier que (z ̸= 0) Ilestclairque (z = 2 − 2i ̸= 0) , donconpeutpoursuivre.
» Étape 2 — Déterminer la forme algébrique de (z) Déjàdonnée : (z = a + ib = 2 − 2i) , avec (a = 2) et (b = −2) .

» Étape 3 — Calcul de (|z|)
[
|z| =

√
a2 + b2 =

√
22 + (−2)2 =

√
4 + 4 =

√
8 = 2

√
2
]

» Étape 4 — Calculer le cosinus et le sinus de l’angle
[
cos(θ) = a

|z| = 2
2

√
2 = 1√

2 =
√

2
2 , sin(θ) = b

|z| = −2
2

√
2 = − 1√

2 = −
√

2
2

]
» Étape 5 — Déterminer (θ) aveclecercletrigonométriquePuisquelecosinusestpositifetlesinusestnégatif :[
θ = 7π

4 + 2kπ, k ∈ Z
]

» Conclusion

[
arg(z) = 7π

4 + 2kπ où k ∈ Z

]

Forme trigonométrique d’un complexe

_ Écriture exponentielle d’un complexe

Soit θ ∈ R.
Posons :

exp(iθ) = eiθ = cos(θ) + i sin(θ)

Soit z ∈ C et θ un de ses arguments,
Alors :

z = |z| cos(θ) + i sin(θ) = |z|eiθ

C’est la forme trigonométrique de z .

Á Forme exponentielle d’un complexe

z = |z|eiθ

- Remarque

On note R∗
+ l’ensemble des réels strictement positifs.

Ainsi, soient z1 = r1eiθ1 et z2 = r2eiθ2 avec r1, r2 ∈ R∗
+ et θ1, θ2 ∈ R.

(z1 = z2) ⇐⇒ (r1 = r2 et θ1 = θ2 + 2kπ, k ∈ Z)

Les arguments sont égaux à 2kπ près.
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Á Formules de Moivre
Soit n ∈ Z et θ ∈ R.
Alors on a :

(eiθ)n = einθ

Ainsi on obtient :

(cos(θ) + i sin(θ)) = cos(nθ) + i sin(nθ)

Á Formules d’Euler
Soit θ ∈ R alors,

cos(θ) = eiθ + e−iθ

2 sin(θ) = eiθ − e−iθ

2i

4 Résolution d’équations du second degré

Rappels – SPÉ MATHS & MATHS EXPERTES

_ Polynôme de degré 2

Soit a, b, c ∈ R.
On appelle polynôme de degré 2 ou polynôme du second degré , tout polynôme de la forme :

P (x) = ax2 + bx + c

Résolution d’une équation de degré 2 à coefficients réels
On souhaite résoudre une équation de la forme :

ax2 + bx + c = 0

On commence par calculer le discriminant du polynôme noté ∆ = b2 − 4ac et on détermine les solutions selon les cas :

1 Si ∆ > 0
Alors il y a deux solutions notées x1 et x2 réelles telle que :

x1,2 = −b ±
√

∆
2a

Et le polynôme se factorise P (x) = a(x − x1)(x − x2)
2 Si ∆ = 0

Alors il y a une solution x0 dite double telle que :

x0 = −b

2a

Et le polynôme se factorise P (x) = a(x − x0)2.

3 Si ∆ < 0
Alors il y a deux solutions complexes z1 et z2 de la forme :

z1,2 = −b ± i
√

−∆
2a

Et, le polynôme se factorise P (x) = (x − z1)(x − z2)

- Remarque

Ces cas distincts sont à connaître !
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Racine carrée d’un nombre complexe

_ Racine carrée d’un complexe

Soit ∆ ∈ C, un nombre complexe donné.
Le nombre δ ∈ C est appelé racine carrée de ∆ si et
seulement si :

δ2 = ∆.

- Remarque

Si ∆ ∈ R∗
− alors, il est interdit d’écrire «

√
∆ » car la

racine carrée est définie sur R+.

f : R+ → R+

x 7→
√

x

Nous, notre objectif est de résoudre l’équation δ2 = ∆.
Il existe alors 2 méthodes :

➢ La méthode trigonométrique ➢ La méthode algébrique

Á Méthode trigonométrique

Soit θ un argument de ∆ ̸= 0.
Alors l’équation δ2 = ∆ admet deux solutions :

δ1,2 = ±
√

|∆|e(i θ
2 )

� Méthode

Trouver les racines carrées : MÉTHODE TRIGONOMÉTRIQUE

On considère une équation de degré 2 à coefficients complexes a, b, c ∈ C de la forme :

az2 + bz + c = 0

1 Calculer le discriminant ∆ = b2 − 4ac.

2 Vérifier que ∆ ∈ C∗.

3 Déterminer la forme exponentielle de ∆, c’est à dire ∆ = |∆|eiθ.

4 Les solutions de l’équation δ2 = ∆ sont données par :

δ1,2 = ±
√

|∆|e(i θ
2 )

� Exemple

On souhaite résoudre :

δ2 = 2i

par la MÉTHODE TRIGONOMÉTRIQUE.
On pose ∆ = δ2, i.e. ∆ = 2i.
» Étape 4 – Calculer la forme exponentielle de ∆
Calculons |∆|,
Puisque ∆ = 2i alors |∆| =

√
22 =

√
2 = 4

On se retrouve alors avec :

cos(θ) = a

|∆|
= 0

2 = 0 et sin(θ) = b

|∆|
= 2

2 = 1

Grâce au cercle trigonométrique, on peut affirmer que
l’angle θ cherché est :

θ = π

2 + 2kπ, k ∈ Z

» Étape 5 – Calculer les solutions
On sait que

π
2
2

= π

4 .

Alors les solutions de ∆ = 2i sont données par :

δ1 =
√

2ei π
4 et δ2 = −

√
2ei π

4

On peut essayer de simplifier les expressions :

δ1 =
√

2(cos(π

4 ) + i sin(π

4 )) ; δ2 = −
√

2(cos(π

4 ) + i sin(π

4 ))

δ1 =
√

2
(√

2
2 + i

√
2

2

)
; δ2 = −

√
2

(√
2

2 + i

√
2

2

)
δ1 = 1 + i ; δ2 = −1 − i
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- Remarque

La méthode trigonométrique peut être difficile à utiliser si l’angle θ a trouver n’est pas un angle remarquable.
C’est pour cela qu’on privilégiera la méthode algébrique.

Propriété
RÉSOLUTION PAR LA MÉTHODE ALGÉBRIQUE

Supposons que ∆ = a + ib avec a, b ∈ R.
Alors l’équation ∆ = δ2 admet deux solutions de la forme δ = x + iy où x et y sont solutions du système suivant :

x2 + y2 = |∆| =
√

a2 + b2

x2 − y2 = Re(∆) = a

2xy = Im(∆) = b

� Méthode

Trouver les racines carrées : MÉTHODE ALGÉBRIQUE

On considère une équation de degré 2 à coefficients complexes a, b, c ∈ C de la forme :

az2 + bz + c = 0

1 Calculer le discriminant ∆ = b2 − 4ac.

2 Si besoin, calculer la forme algébrique de ∆.

3 Écrire et résoudre le système suivant : 
x2 + y2 = |∆| =

√
a2 + b2

x2 − y2 = Re(∆) = a

2xy = Im(∆) = b

4 Les solutions de l’équation δ2 = ∆ sont données par :

δ1,2 = x + iy

Chaque couple (x, y) trouvé représente une solution.

� Exemple

On souhaite résoudre :

δ2 = 2 + 2i

Posons ∆ = δ2 donc ∆ = 3 + 4i.
» Étape 3 – Écrire et résoudre le système
Commençons par calculer |∆|

|∆| =
√

32 + 42 =
√

9 + 16 =
√

25 = 5
x2 + y2 = |∆| = 5
x2 − y2 = Re(∆) = 3
2xy = Im(∆) = 4

➢ L1 + L2, on a 2x2 = 8 ⇐⇒ x2 = 4 ⇐⇒ x = ±2
➢ L1 − L2, on a 2y2 = 2 ⇐⇒ y2 = 1 ⇐⇒ y ± 1

➢ D’après L3, 2xy > 0 alors x, y de même signe dans les
solutions.

Les solutions de δ2 = ∆ sont données par :

δ1 = 2 + i et δ2 = −2 − i
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Propriété
SOLUTIONS FINALES D’UNE ÉQUATION DE DEGRÉ 2

Soit l’équation de degré 2 suivante :

az2 + bz + c = 0

Avec a, b, c ∈ C et a ̸= 0.
Alors les solutions de l’équation sont données par :

z1,2 = −b ± δ

2a

Où δ est une racine carrée de ∆.

� Méthode

Résoudre une équation de degré 2

1 Déterminer a, b, c et vérifier que a ̸= 0.

2 Calculer ∆ = b2 − 4ac.

3 Trouver une racine carrée δ de ∆ en utilisant la méthode algébrique ou la méthode trigonométrique.

4 Choisir une des racines carrées trouvées.

5 Déterminer les solutions finales de l’équation :

z1,2 = −b ± δ

2a
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